
Lecture 4:
The Principle of Criticality

[§5, §9, §11.3, and §∞.1 (+ §10.3) of
“The Principles of Deep Learning Theory (PDLT),”
arXiv:2106.10165]
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• Infinite width:

• Large-but-finite width at                                                             :

specified by 

specified by 

[*different notion from
“sparsity” as in pruned networks]
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Lecture 3: The Principle of Sparsity, deriving recursions

Lecture 4: The Principle of Criticality, solving recursions

Statistical Sho

Some Practical Lessons:
ways to avoid exploding/vanishing gradient problems for deep neural networks 



Review of Notations and Conventions

Initialization hyperparameters:

Diagonal, group-by-group, learning rate:

Two pedagogical simplifications: (i) a single input; (ii) layer-independent hyperparameters
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Many more things…



Outline
1. Scale-Invariant Activation Functions: 

2. More Generally

Ø universality class:

Ø Half-stable universality class:

Ø No criticality, no deep learning: 

3. Finite-Width Effects and Deep Learning

4. More on Why Criticality?
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• : exploding signal

• : vanishing signal

• : critical signal propagation @

Kernel Recursion

Kaiming init. for      



[Exercise:                  case]

Kernel Recursion



NTK Mean Recursion



Some integrals as before:

NTK Mean Recursion



Some integrals as before:

So we have:

NTK Mean Recursion



NTK Mean Recursion



• : exploding gradient

NTK Mean Recursion



• : exploding gradient

• : vanishing gradient (for lower layers)

NTK Mean Recursion



• : exploding gradient

• : vanishing gradient (for lower layers)

• : critical gradient propagation @

NTK Mean Recursion



Learning rate for deep networks:

NTK Mean Recursion
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At criticality                                        :

Four-Point Recursion



Aside from differences in order-one coefficients,
they all behave similarly when networks become deep.

Scale-Invariant Universality Class



Aside from differences in order-one coefficients,
they all behave similarly when networks become deep.

Scale-Invariant Universality Class

[*                       activation is super-degenerate.]



2. More Generally
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The Principle of Criticality

Necessity of hyperparameter fine-tunings in order to avoid
exponentially exploding/vanishing signal & gradient problems
for deep neural networks

For scale-invariant activation functions,
criticality was attained by fine-tuning as
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More generically, a kernel recursion

has a fixed point                                              satisfying

Expanding the recursion around this fixed point as                                                    :

with 
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• : exploding away

• : collapsing signal

• : critical propagation

satisfying

[                 ]

with 
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• : exploding gradient

• : vanishing gradient (for lower layers)

• : critical gradient

Criticality Condition for the NTK mean



Two Criticality Conditions



Two Criticality Conditions

[For scale-invariant case,                                                            ]



Universality Class: 

at which we have a fixed point                                 with 
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with

and

if and only if

For smooth activation functions
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Universality Class: 

Criticality attained at

• Power-law decay:

• “The Principle of Equivalence” to avoid the polynomial version of the exploding/vanishing 
gradient problem (i.e. to ensure equal contributions to NTK from all groups, §9.4) :

(for odd smooth functions)



Half-Stable Universality Class:



No Criticality, No Deep Learning:

unsatisfiable

Never again for deep learning



The Principle of Criticality

Necessity of hyperparameter fine-tunings in order to avoid
exponentially exploding/vanishing signal & gradient problems
for deep neural networks

We now have a principled way to identify critical initialization hyperparameters
(and also to give no-go for some activation functions).



3. Finite-Width Effects and Deep Learning



What Really Matters

Scale-invariant universality class: universality class:



Scale-invariant universality class: universality class:

What Really Matters



Scale-invariant universality class: universality class:

What Really Matters



Scaling Relations for Finite-Width Effects

NTK fluctuations (§9)

dNTK (§11.3)

ddNTK (§∞.2)

ALL

Non-Gaussianity



Good

NTK fluctuations (§9)
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Bad

NTK fluctuations (§9)

dNTK (§11.3)

ddNTK (§∞.2)

ALL

Non-Gaussianity



“effectively-deep” “overly-deep”
not deep

Sweet Spot
(a part of Lecture 5; also cf. Appendices A and B )
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• Taming exploding/vanishing kernel problem: today+§3 (DLN)+§5 (general)

• Taming exploding/vanishing gradient problem: today+§9.4

• Bayesian evidence: §6.3.1

• Generalization error: §10.3

So Many Reasons!
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training inputs

test input

Generalized Bias-Variance Tradeoff

variance bias

!Here       is over instantiations of networks,
not over realizations of training samples!



training inputs

test input

An analytically tractable case I: 
nearby test input (§10.3.1)

Generalized Bias-Variance Tradeoff

Deep networks with                  :
too inflexible/confident, too biased

Deep networks with                  :
too floppy/sensitive, too varied



The Principle of Sparsity for WIDE Neural Networks

The Principle of Criticality for DEEP Neural Networks

• At infinite width:

• At                   :

Critical signal/gradient propagation @

Emergence of universality classes


