
Lecture 3:
The Principle of Sparsity

[§4, §8, §11.2, and §∞.3 of
“The Principles of Deep Learning Theory (PDLT),”
arXiv:2106.10165]
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Sho will cover Statistics
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Lecture 3: The Principle of Sparsity, deriving recursions

Lecture 4: The Principle of Criticality, solving recursions
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Neural Networks

preactivations
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Neural Networks

Biases and weights (model parameters) are independently (& symmetrically) distributed with variances
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Neural Networks

good wide limit

Biases and weights (model parameters) are independently (& symmetrically) distributed with variances
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[Cf. Andrea’s “S” matrix]

Neural Tangent Kernel (NTK)

Diagonal, group-by-group, learning rate:



good wide limit

Neural Tangent Kernel (NTK)

Diagonal, group-by-group, learning rate:



Two Pedagogical Simplifications

1. Single input; drop sample indices

[See “PDLT” (arXiv:2106.10165) for more general cases.]

2. Layer-independent hyperparameters; drop layer indices from them











2. One-Layer Neural Networks
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Statistics of

• Neurons don’t talk to each other; they are statistically independent.

• We marginalized over/integrated out             and                .

• Two interpretations:
(i) outputs of one-layer networks; or
(ii) preactivations in the first layer of deeper networks.
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Statistics of

• “Deterministic”: it doesn't depend on any particular initialization; you always get the same number.

• “Frozen”: it cannot evolve during training; no representation learning.
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• No representation learning.

• No algorithm dependence.
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Linear dynamics:

Simple solution:
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Statistics of One-Layer Neural Networks

• Same trivial statistics for infinite-width neural networks of any fixed depth.

• No representation learning, no algorithm dependence; not a good model of deep learning.

We must study deeper networks of finite width!



3. Two-Layer Neural Networks



Statistics of



Statistics of

Wick

arrange



Statistics of



Statistics of

• Recursive.

• width-scaling was important.
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Nearly-Gaussian distribution for

[Cf. Gaussian distribution in the first layer:

]



Statistics of

• Gaussian in the infinite-width limit, too simple; specified by one number (one matrix – kernel – more generally)

• Sparse description at                       ; specified by two numbers (two tensors more generally, one of them having four sample indices)

• Interacting neurons at finite width.
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1st piece, the same as before:
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1st piece, the same as before:

width-scaling was important.
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• “Stochastic”: it fluctuates from instantiation to instantiation.

• “Defrosted”: it can evolve during training.
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Statistics of Two-Layer Neural Networks

• Two interpretations:
(i) outputs, NTK, … of a two-layer network; or
(ii) preactivations, mid-layer NTK, … in the second layer of a deeper network.

• Neurons do talk to each other; they are statistically dependent.

• Yes representation learning (and yes algorithm dependence);
they can now capture rich dynamics of real, finite-width, neural networks.



Statistics of Two-Layer Neural Networks

But what is being amplified by deep learning?

• Two interpretations:
(i) outputs, NTK, … of a two-layer network; or
(ii) preactivations, mid-layer NTK, … in the second layer of a deeper network.

• Neurons do talk to each other; they are statistically dependent.

• Yes representation learning (and yes algorithm dependence);
they can now capture rich dynamics of real, finite-width, neural networks.



4. Deep Neural Networks
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NTK forward equation:
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statistics at initialization statistics after training

The Principle of Sparsity for WIDE Neural Networks
DanSho
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specified by 
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• Infinite width:

• Large-but-finite width at                                                             :

specified by 

specified by 

The Principle of Sparsity for WIDE Neural Networks

statistics at initialization statistics after training



All determined through recursion relations
(RG-flow interpretation: §4.6 )
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Next Lecture: Solving Recursions
“The Principle of Criticality”

for
DEEP Neural Networks



One more thing…


